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Abstract— Vision-Language Models (VLMs) have emerged as
a promising approach to address the data scarcity challenge in
robotics, enabling the development of generalizable visuomotor
control policies. While models like OpenVLA showcase the
potential of this paradigm, deploying large-scale VLMs on
resource-constrained mobile manipulation systems remains a
significant hurdle. This paper introduces Edge VLA (EVLA),
a novel approach designed to significantly enhance the in-
ference speed of Vision-Language-Action (VLA) models while
maintaining their representational power and enabling real-
time performance on edge devices. We achieve this through
two key innovations: 1) Eliminating the autoregressive re-
quirement for end-effector position prediction, leading to a
6x speedup in inference, and 2) Leveraging the efficiency of
Small Language Models (SLMs), demonstrating comparable
training performance to larger models with significantly re-
duced computational demands. Our early results demonstrate
that EVLA achieves comparable training characteristics to
OpenVLA while offering substantial gains in inference speed
and memory efficiency. We release our model checkpoints
and training codebase to foster further research on mobile
deployments.

I. INTRODUCTION
The development of robust and generalizable manipulation

policies has long been hampered by the limited availabil-
ity of large-scale, diverse embodied datasets. Recent ad-
vancements in Vision-Language Models (VLMs) [11], [8]
offer a compelling solution to this challenge. By leverag-
ing the vast amount of readily available image-text data,
VLMs can learn rich representations of the world and be
adapted for visuomotor control tasks. Open-source models
like OpenVLA [9] have demonstrated the effectiveness of
this approach, showcasing impressive performance in various
robotic manipulation tasks. However, deploying these large-
scale VLMs, often exceeding billions of parameters, on
resource-constrained mobile platforms with edge devices
like the Jetson Nano presents significant challenges. Their
high computational and memory requirements hinder real-
time performance and limit accessibility for researchers and
practitioners.

The progress in the mobile manipulation can be effective
only if the systems we design are inexpensive and easily
deployable without putting too much strain on compute
requirements. That is why, this paper introduces Edge VLA
(EVLA), a novel VLA architecture designed to address
above mentioned challenges. EVLA offers potential signifi-
cant improvements in inference speed and efficiency without
compromising foundation models’ representational power.
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Our approach centers around two key innovations. Our work
focuses on architectural modifications to achieve significant
speedups while maintaining model performance, specifi-
cally by eliminating the autoregressive requirement for end-
effector prediction and leveraging the efficiency of SLMs.
We challenge the conventional autoregressive approach for
predicting end-effector positions, demonstrating that joint
control, where the entire position is predicted simultaneously,
does not diminish the model’s encoding capabilities. This
modification yields a 7 times increase in inference speed,
crucial for real-time robotic control on edge devices.

Secondly, we explore the potential of recently developed
Small Large Language Models (SMLs), such as Phi [1]
and Gemma [13], which achieve comparable performance to
larger counterparts thanks to scaling laws with significantly
reduced computational footprints. Our proposed architecture
EVLA comprises of a pretrained language model Qwen2-
0.5B fused with two visual encoders SigLIP [18] and
DINOv2 [12] adding to 1B parameters. EVLA maintains
training performance comparable to 7 times largers models
while significantly reducing hardware requirements.

II. RELATED WORK

Learning-based approaches to mobile manipulation starts
to reaching or exceeding the performance of classical model-
based control system. We can divide them roughly into
systems trained from scratch or fine-tuned on top of the
foundation models.

The former approach has been based on behavioral cloning
where typically vision observation are mapped either to the
end effector position and orientation or joint positions [3],
[10]. These models can be enhanced with regularization,
planning, multi-task learning pushing the limits of the per-
formance. A second line of work on mobile manipulation
enables easy deployment with relative cheap hardware but
does not take advantage of foundation model[6]. These
systems typically train model from scratch with the model
size in ranges of 10-100M parameters preventing from seeing
generalization capabilities to novel environments [19], [3].

The line of work that relies on foundation models incor-
porates all aboe-mentioned techniques while seeking more
powerful generalization capabilities. The most heavily ex-
plored approached relies on vision-language models [11],
[8]. The vision component is typically adapted to operate
on the same token space as the LLM allowing to re-use
different blocks Combined with large manipulation dataset
like OpenX [4], they have showcased the promise of this
paradigm generalizing to new environments [2], [9]. Al-
though these work have highlighted the potential of leverag-



Fig. 1: The comparison of generation between OpenVLA and EVLA. The pretraining phase is identical. In the phase two
of EVLA, the LLM is being retrained to generate in autoregressive fashion.

ing large language models (LLMs) they rely on large LLMs,
resulting in substantial computational demands. Efforts to
improve efficiency include quantization techniques [16] and
hardware-specific kernels [14]. Nevertheless, these system
achieves speed of only 5 to 10Hz with stationary compute
systems preventing from the deployment on edge even in the
laboratory setting.

III. METHOD
A. Phase 1: VLM Pretraining

EVLA’s foundation is a VLM trained using a combination
of image-text pairs sourced from diverse captioning datasets
and synthetically generated multimodal instruction-tuning
examples. We adopt a two-part visual encoder, employing
pretrained SigLIP [18] and DinoV2 [12] models, following
the architecture of OpenVLA.

For language processing, we utilize Qwen2 [17] with 0.5B
parameters that demostrates the effectiveness of SLMs in
achieving comparable performance to larger models. A pro-
jection layer maps the visual representation to the language
model’s token space. The pre-training dataset comprises
1.2M text-image pairs, facilitating the learning of robust
visual and language representations following the recipe of
PrismaticVLM family of models [8].

B. Phase 2: Joint Control for End-Effector Prediction
Traditional VLAs often employ an autoregressive ap-

proach for predicting end-effector positions, mimicking the
causal nature of language generation. However, we hypothe-
size that for robotic control this restriction is not inherently
necessary. We propose that predicting the entire end-effector
position jointly, rather than sequentially, does not compro-
mise the model’s encoding capabilities while significantly
improving inference speed.

By removing the causal mask in the LLM and training the
model to output the complete end-effector position at once,
we bypass autoregressive requirements achieving by defini-
tion 7 times speedup in inference, a crucial advancement for
real-time applications on edge devices. See Figure 1 for the
overall layout of the final model.

IV. EARLY RESULTS
In order to evaluate EVLA’s capabilities of adapting to

non-autoregressive loss while being substantially smaller we
used on BridgeData V2 and OpenX datasets. We hypothesize
that the early training results will shed some light on model
characteristics.

A. BridgeData V2 training characteristics

Initial experiments on the BridgeData V2 dataset [15]
conducted on a single node with 8 A100-80GB GPUs,
validate that EVLA can achieve similar performance to the
7.5B parameters equivalent. Figure ?? illustrates the training
progress, showcasing the comparable performance of the two
models.

It is worth pointing out that the training efficiency is
distinguishably slower for EVLA.

B. OpenX training characteristics

We further evaluate EVLA on the full OpenX dataset, uti-
lizing 80 A100-40GB GPUs for a 5 days. While EVLA trains
slower than OpenVLA due to the smaller representational
power, the training iteration is 7 times faster and allows
for larger batch sizes, effectively mitigating the difference
in training efficiency. Figure ?? shows the training progress
on the OpenX dataset.

Due to computational constraints, we were not able to
reproduce full two weeks training as in the original imple-
mentation. However, the training curves behaves similarly to
the BridgeV2 case.

C. Efficiency Gains

EVLA’s architectural modifications result in substantial
improvements in the inference speed and memory con-
sumption, enabling deployment on resource-constrained edge
devices. Table I compares the inference time and memory
requirements of EVLA and OpenVLA on an A100-40GB
GPU.

By using a smaller VLM and optimizing our architecture,
we can achieve significant inference speed and memory im-
provements. These speedups will only increase with addition
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Fig. 2: The loss (left) and action token accuracy (right) training curves for both OpenVLA and EVLA models during training
on the BridgeData V2 dataset.
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Fig. 3: The loss (left) and action token accuracy (right) training curves for both OpenVLA and EVLA models during training
on the OpenX dataset.

TABLE I: Efficiency Comparison of EVLA and OpenVLA.

Model Inference Time (ms) Memory Usage (GB)
OpenVLA 20 16

EVLA 5 4

of more degrees of freedom. It is worth noting that OpenVLA
uses flash attention2 [5] kernels, while EVLA is evaluated in
the eager mode. Advances in flexible and efficient attention
mechanisms, such as FlexAttention [7], are expected to push
these numbers even lower. These results shows the path for
the deployment on mobile manipulation systems on CPU
architectures.

V. CONCLUSIONS

This paper presents Edge VLA (EVLA), a novel VLA
architecture designed for efficient deployment on mobile ma-
nipulators or humanoids. By eliminating the autoregressive
requirement for end-effector prediction and leveraging the
efficiency of SLMs, EVLA achieves significant speedups in
inference time and reductions in memory footprint with-
out compromising model performance. Our results sug-
gest EVLA’s effectiveness on diverse robotic embodiments,
paving the way for real-time VLA applications on resource-

constrained platforms.
We release our model checkpoints and training codebase to

facilitate further research. We believe that EVLA’s efficiency
and accessibility will empower researchers and practitioners
to explore the full potential of VLAs for mobile manipula-
tion. Future work will focus on further optimizing EVLA’s
architecture and exploring its deployment on a wider range
of edge devices, including CPU-based platforms.
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